

Welcome to ESTorch’s documentation!

	
estorch.estorch.rank_transformation(rewards)

	Applies rank transformation to the returns.

Examples

>>> rewards = [-123, -50, 3, -5, 20, 10, 100]
>>> estorch.rank_transformation(rewards)
array([-0.5 , -0.33333333, 0. , -0.16666667, 0.33333333,
 0.16666667, 0.5])

	
class estorch.VirtualBatchNorm(num_features, eps=1e-05)

	Applies Virtual Batch Normalization over a 4D input (a mini-batch
of 2D inputs with additional channel dimension) as described in
paper Improved Techniques for Training GANs:
https://arxiv.org/abs/1606.03498

\[y = \frac{x - \mathrm{E}[x_\text{ref}]}{ \sqrt{\mathrm{Var}[x_\text{ref}] + \epsilon}} * \gamma + \beta\]

VirtualBatchNorm requires two forward passes. First one is to
calculate mean and variance over a reference batch and second
is to calculate the actual output.

	Parameters

	
	num_features – \(C\) from an expected input of size
\((N, C, H, W)\)

	eps – a value added to the denominator for numerical stability.
Default: 1e-5

	
class estorch.ES(policy, agent, optimizer, population_size, sigma=0.01, device=device(type='cpu'), policy_kwargs={}, agent_kwargs={}, optimizer_kwargs={})

	Classic Evolution Strategy Algorithm. It optimizes given
policy for the max reward return. For example usage refer to
https://github.com/goktug97/estorch/blob/master/examples/cartpole_es.py

\[\nabla_{\theta} \mathbb{E}_{\epsilon \sim N(0, I)} F(\theta+\sigma \epsilon)=\frac{1}{\sigma} \mathbb{E}_{\epsilon \sim N(0, I)}\{F(\theta+\sigma \epsilon) \epsilon\}\]

	Evolution Strategies as a Scalable Alternative to Reinforcement Learning:
https://arxiv.org/abs/1703.03864

	Parameters

	
	policy – PyTorch Module. Should be passed as a class.

	agent – Policy will be optimized to maximize the output of this
class’s rollout function. For an example agent class refer to;
https://github.com/goktug97/estorch/blob/master/examples/cartpole_es.py
Should be passed as a class.

	optimizer – Optimizer that will be used to update parameters of the policy.
Any PyTorch optimizer can be used. Should be passed as a class.

	population_size – Population size of the evolution strategy.

Note

if you are using multiprocessing make sure population_size is
multiple of n_proc

	sigma – Standart Deviation to use while sampling the generation from the policy.

	device – Torch device

Note

For every process a target network will be created to use during rollout.
That is why I don’t recommend use of torch.device('cuda').

	policy_kwargs – This dictionary of arguments will passed to the policy during
initialization.

	agent_kwargs – This dictionary of arguments will passed to the agent during
initialization.

	optimizer_kwargs – This dictionary of arguments will passed to
the optimizer during initialization.

	Variables

	
	policy – Each step this policy is optimized. Only in master process.

	optimizer – Optimizer that is used to optimize the
policy. Only in master process.

	agent – Used for rollout in each processes.

	n_parameters – Number of trainable parameters of the policy.

	best_reward – Best reward achived during the training.

	episode_reward – Reward of the policy after the optimization.

	best_policy_dict – PyTorch state_dict of the policy with the highest reward.

	population_returns – Current population’s rewards.

	population_parameters – Parameter vectors of the current population.

	
log()

	log function is called after every optimization step.
This function can be used to interract with the model during the training.
By default its contents are:

print(f'Step: {self.step}')
print(f'Episode Reward: {self.episode_reward}')
print(f'Max Population Reward: {np.max(self.population_returns)}')
print(f'Max Reward: {self.best_reward}')

For example usage;
https://github.com/goktug97/estorch/blob/master/examples/early_stopping.py

	
terminate()

	Terminates the training and sends terminate signal to other processes.

	
train(n_steps, n_proc=1, hwthread=False, hostfile=None)

	Train Evolution Strategy algorithm for n_steps in n_proc processes.

Note

This function can not be called more than once in the same
script if n_proc is set to more than 1 because it
executes the same script n_proc times which means it
will start from the beginning of the script everytime.

	Parameters

	
	n_steps – Number of training steps.

	n_proc – Number of processes. Processes are used for rollouts.

	hwthread – A boolean value, if True use hardware
threads as independent cpus. Some processors are
hyperthreaded which means 1 CPU core is splitted into
multiple threads. For example in Linux, nproc command
returns number of cores and if that number doesn’t work
here set hwthread to True and try again.

	hostfile – If set, n_proc and hwthread will be ignored and the
hostfile will be used to initialize
multiprocessing. For more information visit
https://github.com/open-mpi/ompi/blob/9c0a2bb2d675583934efd5e6e22ce8245dd5554c/README#L1904

	Raises

	RuntimeError – train function can not be called more than once.

	
class estorch.NS_ES(policy, agent, optimizer, population_size, sigma=0.01, meta_population_size=3, k=10, device=device(type='cpu'), policy_kwargs={}, agent_kwargs={}, optimizer_kwargs={})

	Novelty Search Evolution Strategy Algorithm. It optimizes given
policy for the max novelty return. For example usage refer to
https://github.com/goktug97/estorch/blob/master/examples/nsra_es.py
This class is inherited from the ES so every function that is described
in the ES can be used in this class too.

\[\nabla_{\theta_{t}} \mathbb{E}_{e \sim N(0, I)}\left[N\left(\theta_{t}+\sigma \epsilon, A\right) | A\right] \approx \frac{1}{n \sigma} \sum_{i=1}^{n} N\left(\theta_{t}^{i}, A\right) \epsilon_{i}\]

Where \(N\left(\theta_{t}^{i}, A\right)\) is calculated as;

\[N(\theta, A)=N\left(b\left(\pi_{\theta}\right), A\right)=\frac{1}{|S|} \sum_{j \in S}\left\|b\left(\pi_{\theta}\right)-b\left(\pi_{j}\right)\right\|_{2}\]

\[S=k N N\left(b\left(\pi_{\theta}\right), A\right)\]

\[=\left\{b\left(\pi_{1}\right), b\left(\pi_{2}\right), \ldots, b\left(\pi_{k}\right)\right\}\]

	Improving Exploration in Evolution Strategies for Deep
Reinforcement Learning via a Population of Novelty-Seeking Agents
http://papers.nips.cc/paper/7750-improving-exploration-in-evolution-strategies-for-deep-reinforcement-learning-via-a-population-of-novelty-seeking-agents.pdf

	Parameters

	
	policy – PyTorch Module. Should be passed as a class.

	agent – Policy will be optimized to maximize the output of this
class’s rollout function. For an example agent class refer to;
https://github.com/goktug97/estorch/blob/master/examples/cartpole_es.py
Should be passed as a class.

	optimizer – Optimizer that will be used to update parameters of the policy.
Any PyTorch optimizer can be used. Should be passed as a class.

	population_size – Population size of the evolution strategy.

Note

if you are using multiprocessing make sure population_size is
multiple of n_proc

	sigma – Standart Deviation to use while sampling the generation from the policy.

	meta_population_size – Instead of one policy a meta population
of policies are optimized during
training. Each step a policy is chosen
from the meta population. Probability of
each policy is calculated as;

\[P\left(\theta^{m}\right)=\frac{N\left(\theta^{m}, A\right)}{\sum_{j=1}^{M} N\left(\theta^{3}, A\right)}\]

	k – Number of nearest neigbhours used in the calculation of the novelty.

	device – Torch device

Note

For every process a target network will be created to use during rollout.
That is why I don’t recommend use of torch.device('cuda').

	policy_kwargs – This dictionary of arguments will passed to the policy during
initialization.

	agent_kwargs – This dictionary of arguments will passed to the agent during
initialization.

	optimizer_kwargs – This dictionary of arguments will passed to
the optimizer during initialization.

	Variables

	
	meta_population – List of (policy, optimizer) tuples.

	idx – Selected (policy, optimizer) tuple index in the current step.

	agent – Used for rollout in each processes.

	n_parameters – Number of trainable parameters.

	best_reward – Best reward achived during the training.

	episode_reward – Reward of the chosen policy after the optimization.

	best_policy_dict – PyTorch state_dict of the policy with the highest reward.

	population_returns – List of (novelty, reward) tuple of the current population.

	population_parameters – Parameter vectors of the current
population that sampled from the chosen policy.

	
class estorch.NSR_ES(policy, agent, optimizer, population_size, sigma=0.01, meta_population_size=3, k=10, device=device(type='cpu'), policy_kwargs={}, agent_kwargs={}, optimizer_kwargs={})

	Quality Diversity Evolution Strategy Algorithm. It optimizes
given policy for the max avarage of novelty and reward return. For
example usage refer to
https://github.com/goktug97/estorch/blob/master/examples/nsra_es.py
This class is inherited from the NS_ES which inherits
from ES so every function that is described in the
ES can be used in this class too.

\[\theta_{t+1}^{m} \leftarrow \theta_{t}^{m}+\alpha \frac{1}{n \sigma} \sum_{i=1}^{n} \frac{f\left(\theta_{t}^{i, m}\right)+N\left(\theta_{t}^{i, m}, A\right)}{2} \epsilon_{i}\]

	Improving Exploration in Evolution Strategies for Deep
Reinforcement Learning via a Population of Novelty-Seeking Agents
http://papers.nips.cc/paper/7750-improving-exploration-in-evolution-strategies-for-deep-reinforcement-learning-via-a-population-of-novelty-seeking-agents.pdf

	Parameters

	
	policy – PyTorch Module. Should be passed as a class.

	agent – Policy will be optimized to maximize the output of this
class’s rollout function. For an example agent class refer to;
https://github.com/goktug97/estorch/blob/master/examples/cartpole_es.py
Should be passed as a class.

	optimizer – Optimizer that will be used to update parameters of the policy.
Any PyTorch optimizer can be used. Should be passed as a class.

	population_size – Population size of the evolution strategy.

Note

if you are using multiprocessing make sure population_size is
multiple of n_proc

	sigma – Standart Deviation to use while sampling the generation from the policy.

	meta_population_size – Instead of one policy a meta population
of policies are optimized during
training. Each step a policy is chosen
from the meta population. Probability of
each policy is calculated as;

\[P\left(\theta^{m}\right)=\frac{N\left(\theta^{m}, A\right)}{\sum_{j=1}^{M} N\left(\theta^{3}, A\right)}\]

	k – Number of nearest neigbhours used in the calculation of the novelty.

	device – Torch device

Note

For every process a target network will be created to use during rollout.
That is why I don’t recommend use of torch.device('cuda').

	policy_kwargs – This dictionary of arguments will passed to the policy during
initialization.

	agent_kwargs – This dictionary of arguments will passed to the agent during
initialization.

	optimizer_kwargs – This dictionary of arguments will passed to
the optimizer during initialization.

	Variables

	
	meta_population – List of (policy, optimizer) tuples.

	idx – Selected (policy, optimizer) tuple index in the current step.

	agent – Used for rollout in each processes.

	n_parameters – Number of trainable parameters.

	best_reward – Best reward achived during the training.

	episode_reward – Reward of the chosen policy after the optimization.

	best_policy_dict – PyTorch state_dict of the policy with the highest reward.

	population_returns – List of (novelty, reward) tuple of the current population.

	population_parameters – Parameter vectors of the current
population that sampled from the chosen policy.

	
class estorch.NSRA_ES(policy, agent, optimizer, population_size, sigma=0.01, meta_population_size=3, k=10, min_weight=0.0, weight_t=50, weight_delta=0.05, device=device(type='cpu'), policy_kwargs={}, agent_kwargs={}, optimizer_kwargs={})

	Quality Diversity Evolution Strategy Algorithm. It optimizes
given policy for the max weighted avarage of novelty and reward return. For
example usage refer to
https://github.com/goktug97/estorch/blob/master/examples/nsra_es.py
This class is inherited from the NS_ES which inherits
from ES so every function that is described in the
ES can be used in this class too.

\[\theta_{t+1}^{m} \leftarrow \theta_{t}^{m}+\alpha \frac{1}{n \sigma} \sum_{i=1}^{n} w f\left(\theta_{t}^{i, m}\right) \epsilon_{i}+(1-w) N\left(\theta_{t}^{i, m}, A\right) \epsilon_{i}\]

	Improving Exploration in Evolution Strategies for Deep
Reinforcement Learning via a Population of Novelty-Seeking Agents
http://papers.nips.cc/paper/7750-improving-exploration-in-evolution-strategies-for-deep-reinforcement-learning-via-a-population-of-novelty-seeking-agents.pdf

	Parameters

	
	policy – PyTorch Module. Should be passed as a class.

	agent – Policy will be optimized to maximize the output of this
class’s rollout function. For an example agent class refer to;
https://github.com/goktug97/estorch/blob/master/examples/cartpole_es.py
Should be passed as a class.

	optimizer – Optimizer that will be used to update parameters of the policy.
Any PyTorch optimizer can be used. Should be passed as a class.

	population_size – Population size of the evolution strategy.

Note

if you are using multiprocessing make sure population_size is
multiple of n_proc

	sigma – Standart Deviation to use while sampling the generation from the policy.

	meta_population_size – Instead of one policy a meta population
of policies are optimized during
training. Each step a policy is chosen
from the meta population. Probability of
each policy is calculated as;

\[P\left(\theta^{m}\right)=\frac{N\left(\theta^{m}, A\right)}{\sum_{j=1}^{M} N\left(\theta^{3}, A\right)}\]

	k – Number of nearest neigbhours used in the calculation of the novelty.

	min_weight,weight_t,weight_delta – If the max reward doesn’t improve for
weight_t the weight is lowered by
weight_delta amount. It can’t get lower than
min_weight.

	device – Torch device

Note

For every process a target network will be created to use during rollout.
That is why I don’t recommend use of torch.device('cuda').

	policy_kwargs – This dictionary of arguments will passed to the policy during
initialization.

	agent_kwargs – This dictionary of arguments will passed to the agent during
initialization.

	optimizer_kwargs – This dictionary of arguments will passed to
the optimizer during initialization.

	Variables

	
	meta_population – List of (policy, optimizer) tuples.

	idx – Selected (policy, optimizer) tuple index in the current step.

	agent – Used for rollout in each processes.

	n_parameters – Number of trainable parameters.

	best_reward – Best reward achived during the training.

	episode_reward – Reward of the chosen policy after the optimization.

	best_policy_dict – PyTorch state_dict of the policy with the highest reward.

	population_returns – List of (novelty, reward) tuple of the current population.

	population_parameters – Parameter vectors of the current
population that sampled from the chosen policy.

 Python Module Index

 e

 		 	

 		
 e	

 	[image: -]
 	
 estorch	

 	
 	
 estorch.estorch	

Index

 E
 | L
 | N
 | R
 | T
 | V

E

 	
 	ES (class in estorch)

 	
 	estorch.estorch (module)

L

 	
 	log() (estorch.ES method)

N

 	
 	NS_ES (class in estorch)

 	
 	NSR_ES (class in estorch)

 	NSRA_ES (class in estorch)

R

 	
 	rank_transformation() (in module estorch.estorch)

T

 	
 	terminate() (estorch.ES method)

 	
 	train() (estorch.ES method)

V

 	
 	VirtualBatchNorm (class in estorch)

 nav.xhtml

 Table of Contents

 		
 Welcome to ESTorch’s documentation!

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

