ESTorch

Release 1.0.0

Python Module Index 9
Index 11

estorch.estorch.rank_transformation(rewards)

Applies rank transformation to the returns.

Examples

```
>>> rewards = [-123, -50, 3, -5, 20, 10, 100]

>>> estorch.rank_transformation(rewards)

array([-0.5 , -0.333333333, 0. , -0.16666667, 0.333333333,

0.16666667, 0.5 ])
```

class estorch.VirtualBatchNorm(num_features, eps=1e-05)

Applies Virtual Batch Normalization over a 4D input (a mini-batch of 2D inputs with additional channel dimension) as described in paper *Improved Techniques for Training GANs*: https://arxiv.org/abs/1606.03498

$$y = \frac{x - \mathrm{E}[x_{\mathrm{ref}}]}{\sqrt{\mathrm{Var}[x_{\mathrm{ref}}] + \epsilon}} * \gamma + \beta$$

VirtualBatchNorm requires two forward passes. First one is to calculate mean and variance over a reference batch and second is to calculate the actual output.

Parameters

- num_features C from an expected input of size (N, C, H, W)
- eps a value added to the denominator for numerical stability. Default: 1e-5

Classic Evolution Strategy Algorithm. It optimizes given policy for the max reward return. For example usage refer to https://github.com/goktug97/estorch/blob/master/examples/cartpole_es.py

$$\nabla_{\theta} \mathbb{E}_{\epsilon \sim N(0,I)} F(\theta + \sigma \epsilon) = \frac{1}{\sigma} \mathbb{E}_{\epsilon \sim N(0,I)} \{ F(\theta + \sigma \epsilon) \epsilon \}$$

• Evolution Strategies as a Scalable Alternative to Reinforcement Learning: https://arxiv.org/abs/1703.03864

Parameters

- policy PyTorch Module. Should be passed as a class.
- agent Policy will be optimized to maximize the output of this class's rollout function. For an example agent class refer to; https://github.com/goktug97/estorch/blob/master/examples/cartpole_es.py Should be passed as a class.
- **optimizer** Optimizer that will be used to update parameters of the policy. Any PyTorch optimizer can be used. Should be passed as a class.
- **population_size** Population size of the evolution strategy.

Note: if you are using multiprocessing make sure population_size is multiple of n_proc

- **sigma** Standart Deviation to use while sampling the generation from the policy.
- device Torch device

Note: For every process a target network will be created to use during rollout. That is why I don't recommend use of torch.device('cuda').

- policy_kwargs This dictionary of arguments will passed to the policy during initialization
- agent_kwargs This dictionary of arguments will passed to the agent during initialization.
- optimizer_kwargs This dictionary of arguments will passed to the optimizer during initialization.

Variables

- policy Each step this policy is optimized. Only in master process.
- optimizer Optimizer that is used to optimize the policy. Only in master process.
- agent Used for rollout in each processes.
- n_parameters Number of trainable parameters of the policy.
- **best_reward** Best reward achived during the training.
- episode_reward Reward of the policy after the optimization.
- best_policy_dict PyTorch state_dict of the policy with the highest reward.
- population_returns Current population's rewards.
- population_parameters Parameter vectors of the current population.

log()

log function is called after every optimization step. This function can be used to interract with the model during the training. By default its contents are:

```
print(f'Step: {self.step}')
print(f'Episode Reward: {self.episode_reward}')
print(f'Max Population Reward: {np.max(self.population_returns)}')
print(f'Max Reward: {self.best_reward}')
```

For example usage; https://github.com/goktug97/estorch/blob/master/examples/early stopping.py

terminate()

Terminates the training and sends terminate signal to other processes.

train (*n_steps*, *n_proc=1*, *hwthread=False*, *hostfile=None*)

Train Evolution Strategy algorithm for n_steps in n_proc processes.

Note: This function can not be called more than once in the same script if n_proc is set to more than 1 because it executes the same script n_proc times which means it will start from the beginning of the script everytime.

Parameters

- n_steps Number of training steps.
- n proc Number of processes. Processes are used for rollouts.

- hwthread A boolean value, if True use hardware threads as independent cpus. Some processors are hyperthreaded which means 1 CPU core is splitted into multiple threads. For example in Linux, *nproc* command returns number of cores and if that number doesn't work here set hwthread to True and try again.
- hostfile If set, n_proc and hwthread will be ignored and the hostfile will be used to initialize multiprocessing. For more information visit https://github.com/open-mpi/ompi/blob/9c0a2bb2d675583934efd5e6e22ce8245dd5554c/README#L1904

Raises RuntimeError - train function can not be called more than once.

Novelty Search Evolution Strategy \tilde{A} lgorithm. It optimizes given policy for the max novelty return. For example usage refer to https://github.com/goktug97/estorch/blob/master/examples/nsra_es.py This class is inherited from the ES so every function that is described in the ES can be used in this class too.

$$\nabla_{\theta_t} \mathbb{E}_{e \sim N(0,I)} \left[N \left(\theta_t + \sigma \epsilon, A \right) | A \right] \approx \frac{1}{n\sigma} \sum_{i=1}^n N \left(\theta_t^i, A \right) \epsilon_i$$

Where $N\left(\theta_{t}^{i},A\right)$ is calculated as;

$$N(\theta, A) = N(b(\pi_{\theta}), A) = \frac{1}{|S|} \sum_{j \in S} \|b(\pi_{\theta}) - b(\pi_{j})\|_{2}$$
$$S = kNN(b(\pi_{\theta}), A)$$
$$= \{b(\pi_{1}), b(\pi_{2}), \dots, b(\pi_{k})\}$$

Improving Exploration in Evolution Strategies for Deep Reinforcement Learning via a Population of Novelty-Seeking Agents http://papers.nips.cc/paper/7750-improving-exploration-in-evolution-strategies-for-deep-reinforcement-learning-via-a-population-of-novelty-seeking-pdf

Parameters

- policy PyTorch Module. Should be passed as a class.
- agent Policy will be optimized to maximize the output of this class's rollout function. For an example agent class refer to; https://github.com/goktug97/estorch/blob/master/examples/cartpole_es.py Should be passed as a class.
- **optimizer** Optimizer that will be used to update parameters of the policy. Any PyTorch optimizer can be used. Should be passed as a class.
- **population_size** Population size of the evolution strategy.

Note: if you are using multiprocessing make sure population_size is multiple of n_proc

- **sigma** Standart Deviation to use while sampling the generation from the policy.
- meta_population_size Instead of one policy a meta population of policies are optimized during training. Each step a policy is chosen from the meta population. Probability of each policy is calculated as;

$$P\left(\theta^{m}\right)=\frac{N\left(\theta^{m},A\right)}{\sum_{j=1}^{M}N\left(\theta^{3},A\right)}$$

- **k** Number of nearest neighbours used in the calculation of the novelty.
- **device** Torch device

Note: For every process a target network will be created to use during rollout. That is why I don't recommend use of torch.device('cuda').

- policy_kwargs This dictionary of arguments will passed to the policy during initialization.
- agent_kwargs This dictionary of arguments will passed to the agent during initialization.
- optimizer_kwargs This dictionary of arguments will passed to the optimizer during initialization.

Variables

- meta_population List of (policy, optimizer) tuples.
- idx Selected (policy, optimizer) tuple index in the current step.
- agent Used for rollout in each processes.
- n_parameters Number of trainable parameters.
- **best_reward** Best reward achived during the training.
- **episode_reward** Reward of the chosen policy after the optimization.
- best_policy_dict PyTorch state_dict of the policy with the highest reward.
- **population_returns** List of (novelty, reward) tuple of the current population.
- **population_parameters** Parameter vectors of the current population that sampled from the chosen policy.

class estorch.NSR_ES (policy, agent, optimizer, population_size, sigma=0.01, $meta_population_size=3, k=10, device=device(type='cpu'), policy_kwargs={}, agent_kwargs={}, optimizer_kwargs={})$

Quality Diversity Evolution Strategy Algorithm. It optimizes given policy for the max avarage of novelty and reward return. For example usage refer to https://github.com/goktug97/estorch/blob/master/examples/nsra_es. py This class is inherited from the NS_ES which inherits from ES so every function that is described in the ES can be used in this class too.

$$\theta_{t+1}^{m} \leftarrow \theta_{t}^{m} + \alpha \frac{1}{n\sigma} \sum_{i=1}^{n} \frac{f\left(\theta_{t}^{i,m}\right) + N\left(\theta_{t}^{i,m}, A\right)}{2} \epsilon_{i}$$

Improving Exploration in Evolution Strategies for Deep Reinforcement Learning via a Population of Novelty-Seeking Agents http://papers.nips.cc/paper/7750-improving-exploration-in-evolution-strategies-for-deep-reinforcement-learning-via-a-population-of-novelty-seeking pdf

Parameters

- policy PyTorch Module. Should be passed as a class.
- agent Policy will be optimized to maximize the output of this class's rollout function. For an example agent class refer to; https://github.com/goktug97/estorch/blob/master/examples/cartpole_es.py Should be passed as a class.

- **optimizer** Optimizer that will be used to update parameters of the policy. Any PyTorch optimizer can be used. Should be passed as a class.
- **population_size** Population size of the evolution strategy.

Note: if you are using multiprocessing make sure population_size is multiple of n_proc

- **sigma** Standart Deviation to use while sampling the generation from the policy.
- meta_population_size Instead of one policy a meta population of policies are optimized during training. Each step a policy is chosen from the meta population. Probability of each policy is calculated as:

$$P(\theta^{m}) = \frac{N(\theta^{m}, A)}{\sum_{i=1}^{M} N(\theta^{3}, A)}$$

- **k** Number of nearest neighbours used in the calculation of the novelty.
- device Torch device

Note: For every process a target network will be created to use during rollout. That is why I don't recommend use of torch.device('cuda').

- policy_kwargs This dictionary of arguments will passed to the policy during initialization.
- agent_kwargs This dictionary of arguments will passed to the agent during initialization.
- optimizer_kwargs This dictionary of arguments will passed to the optimizer during initialization.

Variables

- meta population List of (policy, optimizer) tuples.
- idx Selected (policy, optimizer) tuple index in the current step.
- agent Used for rollout in each processes.
- n_parameters Number of trainable parameters.
- **best_reward** Best reward achived during the training.
- episode_reward Reward of the chosen policy after the optimization.
- best_policy_dict PyTorch state_dict of the policy with the highest reward.
- population_returns List of (novelty, reward) tuple of the current population.
- population_parameters Parameter vectors of the current population that sampled from the chosen policy.

class estorch.NSRA_ES (policy, agent, optimizer, population_size, sigma=0.01, meta_population_size=3, k=10, min_weight=0.0, weight_t=50, weight_delta=0.05, device=device(type='cpu'), policy_kwargs={}, agent kwargs={}, optimizer kwargs={})

Quality Diversity Evolution Strategy Algorithm. It optimizes given policy for the max weighted avarage of novelty and reward return. For example usage refer to https://github.com/goktug97/estorch/blob/master/examples/

nsra_es.py This class is inherited from the NS_ES which inherits from ES so every function that is described in the ES can be used in this class too.

$$\theta_{t+1}^m \leftarrow \theta_t^m + \alpha \frac{1}{n\sigma} \sum_{i=1}^n wf\left(\theta_t^{i,m}\right) \epsilon_i + (1-w)N\left(\theta_t^{i,m}, A\right) \epsilon_i$$

 Improving Exploration Evolution Strategies for Deep Reinforcement in Learn-Population of Novelty-Seeking Agents http://papers.nips.cc/paper/ ing 7750-improving-exploration-in-evolution-strategies-for-deep-reinforcement-learning-via-a-population-of-novelty-seeking

Parameters

- policy PyTorch Module. Should be passed as a class.
- agent Policy will be optimized to maximize the output of this class's rollout function. For an example agent class refer to; https://github.com/goktug97/estorch/blob/master/examples/cartpole_es.py Should be passed as a class.
- **optimizer** Optimizer that will be used to update parameters of the policy. Any PyTorch optimizer can be used. Should be passed as a class.
- **population_size** Population size of the evolution strategy.

Note: if you are using multiprocessing make sure population_size is multiple of n_proc

- **sigma** Standart Deviation to use while sampling the generation from the policy.
- meta_population_size Instead of one policy a meta population of policies are optimized during training. Each step a policy is chosen from the meta population. Probability of each policy is calculated as;

$$P(\theta^{m}) = \frac{N(\theta^{m}, A)}{\sum_{i=1}^{M} N(\theta^{3}, A)}$$

- **k** Number of nearest neighbours used in the calculation of the novelty.
- min_weight, weight_t, weight_delta If the max reward doesn't improve for weight_t the weight is lowered by weight_delta amount. It can't get lower than min weight.
- device Torch device

Note: For every process a target network will be created to use during rollout. That is why I don't recommend use of torch.device('cuda').

- policy_kwargs This dictionary of arguments will passed to the policy during initialization.
- agent_kwargs This dictionary of arguments will passed to the agent during initialization.
- optimizer_kwargs This dictionary of arguments will passed to the optimizer during initialization.

Variables

- meta_population List of (policy, optimizer) tuples.
- idx Selected (policy, optimizer) tuple index in the current step.
- agent Used for rollout in each processes.
- n_parameters Number of trainable parameters.
- **best_reward** Best reward achived during the training.
- episode_reward Reward of the chosen policy after the optimization.
- best_policy_dict PyTorch state_dict of the policy with the highest reward.
- **population_returns** List of (novelty, reward) tuple of the current population.
- **population_parameters** Parameter vectors of the current population that sampled from the chosen policy.

Python Module Index

е

estorch.estorch,??

10 Python Module Index

Index

```
Ε
ES (class in estorch), 1
estorch.estorch (module), 1
log() (estorch.ES method), 2
Ν
NS_ES (class in estorch), 3
NSR_ES (class in estorch), 4
NSRA_ES (class in estorch), 5
R
rank_transformation()
                               (in
                                     module
                                               es-
        torch.estorch), 1
Т
terminate()(estorch.ES method), 2
train() (estorch.ES method), 2
VirtualBatchNorm (class in estorch), 1
```