
ESTorch
Release 1.0.0

Jun 11, 2020

Contents:

Python Module Index 9

Index 11

i

ii

ESTorch, Release 1.0.0

estorch.estorch.rank_transformation(rewards)
Applies rank transformation to the returns.

Examples

>>> rewards = [-123, -50, 3, -5, 20, 10, 100]
>>> estorch.rank_transformation(rewards)
array([-0.5 , -0.33333333, 0. , -0.16666667, 0.33333333,

0.16666667, 0.5])

class estorch.VirtualBatchNorm(num_features, eps=1e-05)
Applies Virtual Batch Normalization over a 4D input (a mini-batch of 2D inputs with additional channel dimen-
sion) as described in paper Improved Techniques for Training GANs: https://arxiv.org/abs/1606.03498

𝑦 =
𝑥− E[𝑥ref]√︀
Var[𝑥ref] + 𝜖

* 𝛾 + 𝛽

VirtualBatchNorm requires two forward passes. First one is to calculate mean and variance over a reference
batch and second is to calculate the actual output.

Parameters

• num_features – 𝐶 from an expected input of size (𝑁,𝐶,𝐻,𝑊)

• eps – a value added to the denominator for numerical stability. Default: 1e-5

class estorch.ES(policy, agent, optimizer, population_size, sigma=0.01, device=device(type=’cpu’),
policy_kwargs={}, agent_kwargs={}, optimizer_kwargs={})

Classic Evolution Strategy Algorithm. It optimizes given policy for the max reward return. For example usage
refer to https://github.com/goktug97/estorch/blob/master/examples/cartpole_es.py

∇𝜃E𝜖∼𝑁(0,𝐼)𝐹 (𝜃 + 𝜎𝜖) =
1

𝜎
E𝜖∼𝑁(0,𝐼){𝐹 (𝜃 + 𝜎𝜖)𝜖}

• Evolution Strategies as a Scalable Alternative to Reinforcement Learning: https://arxiv.org/abs/1703.
03864

Parameters

• policy – PyTorch Module. Should be passed as a class.

• agent – Policy will be optimized to maximize the output of this class’s rollout function. For
an example agent class refer to; https://github.com/goktug97/estorch/blob/master/examples/
cartpole_es.py Should be passed as a class.

• optimizer – Optimizer that will be used to update parameters of the policy. Any PyTorch
optimizer can be used. Should be passed as a class.

• population_size – Population size of the evolution strategy.

Note: if you are using multiprocessing make sure population_size is multiple of
n_proc

• sigma – Standart Deviation to use while sampling the generation from the policy.

• device – Torch device

Contents: 1

https://arxiv.org/abs/1606.03498
https://github.com/goktug97/estorch/blob/master/examples/cartpole_es.py
https://arxiv.org/abs/1703.03864
https://arxiv.org/abs/1703.03864
https://github.com/goktug97/estorch/blob/master/examples/cartpole_es.py
https://github.com/goktug97/estorch/blob/master/examples/cartpole_es.py

ESTorch, Release 1.0.0

Note: For every process a target network will be created to use during rollout. That is why
I don’t recommend use of torch.device('cuda').

• policy_kwargs – This dictionary of arguments will passed to the policy during initial-
ization.

• agent_kwargs – This dictionary of arguments will passed to the agent during initializa-
tion.

• optimizer_kwargs – This dictionary of arguments will passed to the optimizer during
initialization.

Variables

• policy – Each step this policy is optimized. Only in master process.

• optimizer – Optimizer that is used to optimize the policy. Only in master process.

• agent – Used for rollout in each processes.

• n_parameters – Number of trainable parameters of the policy.

• best_reward – Best reward achived during the training.

• episode_reward – Reward of the policy after the optimization.

• best_policy_dict – PyTorch state_dict of the policy with the highest reward.

• population_returns – Current population’s rewards.

• population_parameters – Parameter vectors of the current population.

log()
log function is called after every optimization step. This function can be used to interract with the model
during the training. By default its contents are:

print(f'Step: {self.step}')
print(f'Episode Reward: {self.episode_reward}')
print(f'Max Population Reward: {np.max(self.population_returns)}')
print(f'Max Reward: {self.best_reward}')

For example usage; https://github.com/goktug97/estorch/blob/master/examples/early_stopping.py

terminate()
Terminates the training and sends terminate signal to other processes.

train(n_steps, n_proc=1, hwthread=False, hostfile=None)
Train Evolution Strategy algorithm for n_steps in n_proc processes.

Note: This function can not be called more than once in the same script if n_proc is set to more than
1 because it executes the same script n_proc times which means it will start from the beginning of the
script everytime.

Parameters

• n_steps – Number of training steps.

• n_proc – Number of processes. Processes are used for rollouts.

2 Contents:

https://github.com/goktug97/estorch/blob/master/examples/early_stopping.py

ESTorch, Release 1.0.0

• hwthread – A boolean value, if True use hardware threads as independent cpus. Some
processors are hyperthreaded which means 1 CPU core is splitted into multiple threads.
For example in Linux, nproc command returns number of cores and if that number doesn’t
work here set hwthread to True and try again.

• hostfile – If set, n_proc and hwthread will be ignored and the hostfile
will be used to initialize multiprocessing. For more information visit https://github.com/
open-mpi/ompi/blob/9c0a2bb2d675583934efd5e6e22ce8245dd5554c/README#L1904

Raises RuntimeError – train function can not be called more than once.

class estorch.NS_ES(policy, agent, optimizer, population_size, sigma=0.01, meta_population_size=3,
k=10, device=device(type=’cpu’), policy_kwargs={}, agent_kwargs={}, opti-
mizer_kwargs={})

Novelty Search Evolution Strategy Algorithm. It optimizes given policy for the max novelty return. For example
usage refer to https://github.com/goktug97/estorch/blob/master/examples/nsra_es.py This class is inherited from
the ES so every function that is described in the ES can be used in this class too.

∇𝜃𝑡E𝑒∼𝑁(0,𝐼) [𝑁 (𝜃𝑡 + 𝜎𝜖,𝐴) |𝐴] ≈ 1

𝑛𝜎

𝑛∑︁
𝑖=1

𝑁
(︀
𝜃𝑖𝑡, 𝐴

)︀
𝜖𝑖

Where 𝑁
(︀
𝜃𝑖𝑡, 𝐴

)︀
is calculated as;

𝑁(𝜃,𝐴) = 𝑁 (𝑏 (𝜋𝜃) , 𝐴) =
1

|𝑆|
∑︁
𝑗∈𝑆

‖𝑏 (𝜋𝜃)− 𝑏 (𝜋𝑗)‖2

𝑆 = 𝑘𝑁𝑁 (𝑏 (𝜋𝜃) , 𝐴)

= {𝑏 (𝜋1) , 𝑏 (𝜋2) , . . . , 𝑏 (𝜋𝑘)}

• Improving Exploration in Evolution Strategies for Deep Reinforcement Learn-
ing via a Population of Novelty-Seeking Agents http://papers.nips.cc/paper/
7750-improving-exploration-in-evolution-strategies-for-deep-reinforcement-learning-via-a-population-of-novelty-seeking-agents.
pdf

Parameters

• policy – PyTorch Module. Should be passed as a class.

• agent – Policy will be optimized to maximize the output of this class’s rollout function. For
an example agent class refer to; https://github.com/goktug97/estorch/blob/master/examples/
cartpole_es.py Should be passed as a class.

• optimizer – Optimizer that will be used to update parameters of the policy. Any PyTorch
optimizer can be used. Should be passed as a class.

• population_size – Population size of the evolution strategy.

Note: if you are using multiprocessing make sure population_size is multiple of
n_proc

• sigma – Standart Deviation to use while sampling the generation from the policy.

• meta_population_size – Instead of one policy a meta population of policies are op-
timized during training. Each step a policy is chosen from the meta population. Probability
of each policy is calculated as;

𝑃 (𝜃𝑚) =
𝑁 (𝜃𝑚, 𝐴)∑︀𝑀
𝑗=1 𝑁 (𝜃3, 𝐴)

Contents: 3

https://github.com/open-mpi/ompi/blob/9c0a2bb2d675583934efd5e6e22ce8245dd5554c/README#L1904
https://github.com/open-mpi/ompi/blob/9c0a2bb2d675583934efd5e6e22ce8245dd5554c/README#L1904
https://github.com/goktug97/estorch/blob/master/examples/nsra_es.py
http://papers.nips.cc/paper/7750-improving-exploration-in-evolution-strategies-for-deep-reinforcement-learning-via-a-population-of-novelty-seeking-agents.pdf
http://papers.nips.cc/paper/7750-improving-exploration-in-evolution-strategies-for-deep-reinforcement-learning-via-a-population-of-novelty-seeking-agents.pdf
http://papers.nips.cc/paper/7750-improving-exploration-in-evolution-strategies-for-deep-reinforcement-learning-via-a-population-of-novelty-seeking-agents.pdf
https://github.com/goktug97/estorch/blob/master/examples/cartpole_es.py
https://github.com/goktug97/estorch/blob/master/examples/cartpole_es.py

ESTorch, Release 1.0.0

• k – Number of nearest neigbhours used in the calculation of the novelty.

• device – Torch device

Note: For every process a target network will be created to use during rollout. That is why
I don’t recommend use of torch.device('cuda').

• policy_kwargs – This dictionary of arguments will passed to the policy during initial-
ization.

• agent_kwargs – This dictionary of arguments will passed to the agent during initializa-
tion.

• optimizer_kwargs – This dictionary of arguments will passed to the optimizer during
initialization.

Variables

• meta_population – List of (policy, optimizer) tuples.

• idx – Selected (policy, optimizer) tuple index in the current step.

• agent – Used for rollout in each processes.

• n_parameters – Number of trainable parameters.

• best_reward – Best reward achived during the training.

• episode_reward – Reward of the chosen policy after the optimization.

• best_policy_dict – PyTorch state_dict of the policy with the highest reward.

• population_returns – List of (novelty, reward) tuple of the current population.

• population_parameters – Parameter vectors of the current population that sampled
from the chosen policy.

class estorch.NSR_ES(policy, agent, optimizer, population_size, sigma=0.01,
meta_population_size=3, k=10, device=device(type=’cpu’), policy_kwargs={},
agent_kwargs={}, optimizer_kwargs={})

Quality Diversity Evolution Strategy Algorithm. It optimizes given policy for the max avarage of novelty and
reward return. For example usage refer to https://github.com/goktug97/estorch/blob/master/examples/nsra_es.
py This class is inherited from the NS_ES which inherits from ES so every function that is described in the ES
can be used in this class too.

𝜃𝑚𝑡+1 ← 𝜃𝑚𝑡 + 𝛼
1

𝑛𝜎

𝑛∑︁
𝑖=1

𝑓
(︁
𝜃𝑖,𝑚𝑡

)︁
+𝑁

(︁
𝜃𝑖,𝑚𝑡 , 𝐴

)︁
2

𝜖𝑖

• Improving Exploration in Evolution Strategies for Deep Reinforcement Learn-
ing via a Population of Novelty-Seeking Agents http://papers.nips.cc/paper/
7750-improving-exploration-in-evolution-strategies-for-deep-reinforcement-learning-via-a-population-of-novelty-seeking-agents.
pdf

Parameters

• policy – PyTorch Module. Should be passed as a class.

• agent – Policy will be optimized to maximize the output of this class’s rollout function. For
an example agent class refer to; https://github.com/goktug97/estorch/blob/master/examples/
cartpole_es.py Should be passed as a class.

4 Contents:

https://github.com/goktug97/estorch/blob/master/examples/nsra_es.py
https://github.com/goktug97/estorch/blob/master/examples/nsra_es.py
http://papers.nips.cc/paper/7750-improving-exploration-in-evolution-strategies-for-deep-reinforcement-learning-via-a-population-of-novelty-seeking-agents.pdf
http://papers.nips.cc/paper/7750-improving-exploration-in-evolution-strategies-for-deep-reinforcement-learning-via-a-population-of-novelty-seeking-agents.pdf
http://papers.nips.cc/paper/7750-improving-exploration-in-evolution-strategies-for-deep-reinforcement-learning-via-a-population-of-novelty-seeking-agents.pdf
https://github.com/goktug97/estorch/blob/master/examples/cartpole_es.py
https://github.com/goktug97/estorch/blob/master/examples/cartpole_es.py

ESTorch, Release 1.0.0

• optimizer – Optimizer that will be used to update parameters of the policy. Any PyTorch
optimizer can be used. Should be passed as a class.

• population_size – Population size of the evolution strategy.

Note: if you are using multiprocessing make sure population_size is multiple of
n_proc

• sigma – Standart Deviation to use while sampling the generation from the policy.

• meta_population_size – Instead of one policy a meta population of policies are op-
timized during training. Each step a policy is chosen from the meta population. Probability
of each policy is calculated as;

𝑃 (𝜃𝑚) =
𝑁 (𝜃𝑚, 𝐴)∑︀𝑀
𝑗=1 𝑁 (𝜃3, 𝐴)

• k – Number of nearest neigbhours used in the calculation of the novelty.

• device – Torch device

Note: For every process a target network will be created to use during rollout. That is why
I don’t recommend use of torch.device('cuda').

• policy_kwargs – This dictionary of arguments will passed to the policy during initial-
ization.

• agent_kwargs – This dictionary of arguments will passed to the agent during initializa-
tion.

• optimizer_kwargs – This dictionary of arguments will passed to the optimizer during
initialization.

Variables

• meta_population – List of (policy, optimizer) tuples.

• idx – Selected (policy, optimizer) tuple index in the current step.

• agent – Used for rollout in each processes.

• n_parameters – Number of trainable parameters.

• best_reward – Best reward achived during the training.

• episode_reward – Reward of the chosen policy after the optimization.

• best_policy_dict – PyTorch state_dict of the policy with the highest reward.

• population_returns – List of (novelty, reward) tuple of the current population.

• population_parameters – Parameter vectors of the current population that sampled
from the chosen policy.

class estorch.NSRA_ES(policy, agent, optimizer, population_size, sigma=0.01,
meta_population_size=3, k=10, min_weight=0.0, weight_t=50,
weight_delta=0.05, device=device(type=’cpu’), policy_kwargs={},
agent_kwargs={}, optimizer_kwargs={})

Quality Diversity Evolution Strategy Algorithm. It optimizes given policy for the max weighted avarage of nov-
elty and reward return. For example usage refer to https://github.com/goktug97/estorch/blob/master/examples/

Contents: 5

https://github.com/goktug97/estorch/blob/master/examples/nsra_es.py
https://github.com/goktug97/estorch/blob/master/examples/nsra_es.py

ESTorch, Release 1.0.0

nsra_es.py This class is inherited from the NS_ES which inherits from ES so every function that is described in
the ES can be used in this class too.

𝜃𝑚𝑡+1 ← 𝜃𝑚𝑡 + 𝛼
1

𝑛𝜎

𝑛∑︁
𝑖=1

𝑤𝑓
(︁
𝜃𝑖,𝑚𝑡

)︁
𝜖𝑖 + (1− 𝑤)𝑁

(︁
𝜃𝑖,𝑚𝑡 , 𝐴

)︁
𝜖𝑖

• Improving Exploration in Evolution Strategies for Deep Reinforcement Learn-
ing via a Population of Novelty-Seeking Agents http://papers.nips.cc/paper/
7750-improving-exploration-in-evolution-strategies-for-deep-reinforcement-learning-via-a-population-of-novelty-seeking-agents.
pdf

Parameters

• policy – PyTorch Module. Should be passed as a class.

• agent – Policy will be optimized to maximize the output of this class’s rollout function. For
an example agent class refer to; https://github.com/goktug97/estorch/blob/master/examples/
cartpole_es.py Should be passed as a class.

• optimizer – Optimizer that will be used to update parameters of the policy. Any PyTorch
optimizer can be used. Should be passed as a class.

• population_size – Population size of the evolution strategy.

Note: if you are using multiprocessing make sure population_size is multiple of
n_proc

• sigma – Standart Deviation to use while sampling the generation from the policy.

• meta_population_size – Instead of one policy a meta population of policies are op-
timized during training. Each step a policy is chosen from the meta population. Probability
of each policy is calculated as;

𝑃 (𝜃𝑚) =
𝑁 (𝜃𝑚, 𝐴)∑︀𝑀
𝑗=1 𝑁 (𝜃3, 𝐴)

• k – Number of nearest neigbhours used in the calculation of the novelty.

• min_weight,weight_t,weight_delta – If the max reward doesn’t improve for
weight_t the weight is lowered by weight_delta amount. It can’t get lower than
min_weight.

• device – Torch device

Note: For every process a target network will be created to use during rollout. That is why
I don’t recommend use of torch.device('cuda').

• policy_kwargs – This dictionary of arguments will passed to the policy during initial-
ization.

• agent_kwargs – This dictionary of arguments will passed to the agent during initializa-
tion.

• optimizer_kwargs – This dictionary of arguments will passed to the optimizer during
initialization.

Variables

6 Contents:

https://github.com/goktug97/estorch/blob/master/examples/nsra_es.py
https://github.com/goktug97/estorch/blob/master/examples/nsra_es.py
http://papers.nips.cc/paper/7750-improving-exploration-in-evolution-strategies-for-deep-reinforcement-learning-via-a-population-of-novelty-seeking-agents.pdf
http://papers.nips.cc/paper/7750-improving-exploration-in-evolution-strategies-for-deep-reinforcement-learning-via-a-population-of-novelty-seeking-agents.pdf
http://papers.nips.cc/paper/7750-improving-exploration-in-evolution-strategies-for-deep-reinforcement-learning-via-a-population-of-novelty-seeking-agents.pdf
https://github.com/goktug97/estorch/blob/master/examples/cartpole_es.py
https://github.com/goktug97/estorch/blob/master/examples/cartpole_es.py

ESTorch, Release 1.0.0

• meta_population – List of (policy, optimizer) tuples.

• idx – Selected (policy, optimizer) tuple index in the current step.

• agent – Used for rollout in each processes.

• n_parameters – Number of trainable parameters.

• best_reward – Best reward achived during the training.

• episode_reward – Reward of the chosen policy after the optimization.

• best_policy_dict – PyTorch state_dict of the policy with the highest reward.

• population_returns – List of (novelty, reward) tuple of the current population.

• population_parameters – Parameter vectors of the current population that sampled
from the chosen policy.

Contents: 7

ESTorch, Release 1.0.0

8 Contents:

Python Module Index

e
estorch.estorch, ??

9

ESTorch, Release 1.0.0

10 Python Module Index

Index

E
ES (class in estorch), 1
estorch.estorch (module), 1

L
log() (estorch.ES method), 2

N
NS_ES (class in estorch), 3
NSR_ES (class in estorch), 4
NSRA_ES (class in estorch), 5

R
rank_transformation() (in module es-

torch.estorch), 1

T
terminate() (estorch.ES method), 2
train() (estorch.ES method), 2

V
VirtualBatchNorm (class in estorch), 1

11

	Python Module Index
	Index

